Free Fatty Acid Palmitate Impairs the Vitality and Function of Cultured Human Bladder Smooth Muscle Cells
نویسندگان
چکیده
BACKGROUND Incidence of urinary tract infections is elevated in patients with diabetes mellitus. Those patients show increased levels of the saturated free fatty acid palmitate. As recently shown metabolic alterations induced by palmitate include production and secretion of the pro-inflammatory cytokine interleukine-6 (IL-6) in cultured human bladder smooth muscle cells (hBSMC). Here we studied the influence of palmitate on vital cell properties, for example, regulation of cell proliferation, mitochondrial enzyme activity and antioxidant capacity in hBSMC, and analyzed the involvement of major cytokine signaling pathways. METHODOLOGY/PRINCIPAL FINDINGS HBSMC cultures were set up from bladder tissue of patients undergoing cystectomy and stimulated with palmitate. We analyzed cell proliferation, mitochondrial enzyme activity, and antioxidant capacity by ELISA and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB, JAK/STAT, MEK1, PI3K, and JNK in major cytokine signaling pathway regulation. We found: (i) palmitate decreased cell proliferation, increased mitochondrial enzyme activity and antioxidant capacity; (ii) direct inhibition of cytokine receptor by AG490 even more strongly suppressed cell proliferation in palmitate-stimulated cells, while counteracting palmitate-induced increase of antioxidant capacity; (iii) in contrast knockdown of the STAT3 inhibitor SOCS3 increased cell proliferation and antioxidant capacity; (iv) further downstream JAK/STAT3 signaling cascade the inhibition of PI3K or JNK enhanced palmitate induced suppression of cell proliferation; (v) increase of mitochondrial enzyme activity by palmitate was enhanced by inhibition of PI3K but counteracted by inhibition of MEK1. CONCLUSIONS/SIGNIFICANCE Saturated free fatty acids (e.g., palmitate) cause massive alterations in vital cell functions of cultured hBSMC involving distinct major cytokine signaling pathways. Thereby, certain cytokines might counteract the palmitate-induced downregulation of cell proliferation and vitality. This could be an important link to clinical findings of increased risk of metabolic related bladder diseases such as overactive bladder (OAB) and bladder pain syndrome/interstitial cystitis (BPS/IC).
منابع مشابه
Palmitate Induced IL-6 and MCP-1 Expression in Human Bladder Smooth Muscle Cells Provides a Link between Diabetes and Urinary Tract Infections
BACKGROUND Urinary tract infections (UTI) are more frequent in type-2 diabetes mellitus patients than in subjects with normal glucose metabolism. The mechanisms underlying this higher prevalence of UTI are unknown. However, cytokine levels are altered in diabetic patients and may thus contribute to the development of UTI. Increased levels of free fatty acids (FFA), as observed in obese patients...
متن کاملSaturated fatty acid palmitate aggravates neointima formation by promoting smooth muscle phenotypic modulation.
OBJECTIVE Obesity is a major risk factor of atherosclerotic cardiovascular disease. Circulating free fatty acid levels are known to be elevated in obese individuals and, along with dietary saturated fatty acids, are known to associate with cardiovascular events. However, little is known about the molecular mechanisms by which free fatty acids are linked to cardiovascular disease. APPROACH AND...
متن کاملبررسی تاثیر اسیدالائیدیک بر بیان ژن استئونکتین در سلولهای عضلهی صاف دیوارهی رگها
Background and Objective: Atheroma formation and progression of atherosclerosis are dependent on the expression of bone matrix proteins and regulatory factors such as osteonectin in the vessel walls. Studies have shown that consumption of Trans fatty acids increase risk of cardiovascular diseases. In this study, the effect of elaidic acid on osteonectin gene expression as one of the vascular ca...
متن کاملHigh glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells.
Recent studies have revealed that vascular cells can produce reactive oxygen species (ROS) through NAD(P)H oxidase, which may be involved in vascular injury. However, the pathological role of vascular NAD(P)H oxidase in diabetes or in the insulin-resistant state remains unknown. In this study, we examined the effect of high glucose level and free fatty acid (FFA) (palmitate) on ROS production i...
متن کاملContribution of insulin and Akt1 signaling to endothelial nitric oxide synthase in the regulation of endothelial function and blood pressure.
Impaired insulin signaling via phosphatidylinositol 3-kinase/Akt to endothelial nitric oxide synthase (eNOS) in the vasculature has been postulated to lead to arterial dysfunction and hypertension in obesity and other insulin resistant states. To investigate this, we compared insulin signaling in the vasculature, endothelial function, and systemic blood pressure in mice fed a high-fat (HF) diet...
متن کامل